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QUASI-ONE-DIMENSIONAL NOZZLE FLOWS WITH 
VIBRATIONAL AND CHEMICAL NONEQUILIBRIUM 

Presented by: 
John D. Anderson, Jr. 

ABSTRACT:  A new technique is presented for the numerical solution 
of quasi-one-dimensional, vibrational and chemical nonequilibrium 
nozzle flows including nonequilibrium conditions both upstream 
and downstream of the throat.  This new technique is a time- 
dependent analysis which entails the explicite finite-difference 
solution of the quasi-one-dimensional unsteady flow equations in 
steps of time, starting with assumed initial distributions 
throughout the nozzle.  The steady-state solution is approached 
at large values of time.  A virtue of the present time-dependent 
analysis is its simplicity, which prevails from its initial physical 
formulation to the successful receipt of numerical results.  Also, 
the present solution yields the transient as well as the steady- 
state nonequilibrium nozzle flows.  To exemplify the present analysis, 
results are given for several cases of vibrational and chemical 
nonequilibrium expansions through nozzles. 
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A Time-Dependent Analysis for Quasi-One-Dimensional Nozzle Flows 
With Vibrational and Chemical Nonequilibrium 

This report presents a new technique for the numerical solution of 
quasi-one-dimensional nonequilibrium nozzle flows.  The governing 
equations and numerical approach are discussed in detail, and 
results are presented for the cases of a calorically perfect gas, 
vibrational nonequilibrium and chemical nonequilibrium. 
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NOMENCLATURE 

A   ■ cross-sectional area, also symbol for atomic species 

A'   = A/A* 

A*  = area of throat 

a   = reservoir frozen speed of sound 

a   = frozen speed of sound, also a constant in expression for x 

a'   = a/ao 

c   ■ specific heat per unit mass of mixture 

C   ■ specific heat per mole of species i 

D   ■ dissociation energy per molecule 

E.  ■ internal energy per mole of species i, including the 

heat of formation 

V   =VEo 
E   ■ internal energy of the reservoir mixture 

e .. ■ vibrational internal energy per unit mass 

^ib " evib/RTo 

h   = Planck's constant 

k   = Boltzmann constant 

k_-' = forward reaction rate constant F 

k.,-'  ■ reverse reaction rate constant; k-Vkn " KÄ K r    K     e 

K   = equilibrium constant e 

L = characteristic length taken equal to length of nozzle 

in ■ molecular weight of mixture 

p = pressure 

q ■ general nonequilibrium variable in equation (5) 

R ■ specific gas constant of the mixture 

ft ■ universal gas constant 

vi 
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= time 

= t/(L/ao) 

= temperature (translational) 

" T/To 

= D/k 

= velocity 

■ u/a0 

= In u' 

= rate of production of species i due to chemical reactions 

« distance along nozzle 

» x/L 

= In p' 

s mass fraction of atomic species in a dissociating gas 

" Cp/Cv 

■ In n*' 

= mole-mass ratio of species i (moles of i per unit mass 

of mixture) 

= ni/rio 

= mole-mass ratio of the reservoir mixture 

- in<e;ib' 
■ density 

■ characteristic vibrational frequency 

■ vibrational relaxation time 

- r/(L/ao) 

« In T" 
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Subscripts 

i   = chemical species i 

o   = reservoir conditions 

A   = atomic species 

A, ■ diatomic species 
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Superscript 

j ■ collison partner in equation   (14) 
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INTRODUCTION 

Because of the practical importance of high-temperature flows 

through rocket nozzles and high-enthalpy aerodynamic testing 

facilities, intensive efforts have been made during the past 

decade to obtain relatively exact numerical solutions for the 

quasi-one-dimensional expansion of a high-temperature gas through 

a convergent-divergent nozzle when vibrational and/or jhemical 

nonequilibrium conditions prevail within the gas both upstream 

and downstream of the throat.  (See for example, Refs. 1-6, 10-13, 

23-25.)  All of these nonequilibrium solutions involve steady- 

state analyses, and are by no means trivial; however, the 

evolution of such efforts has produced adequate and sophisticated 

techniques for the analysis of nonequilibrium nozzle flows. 

An authoratative discussion of these steady-flow techniques can 

be found in Ref. 1. 

The purpose of the present paper is to present a new, 

alternative approach for the numerical solution of quasi-one- 

dimensional nonequilibrium nozzle flows.  This new technique is 

a time-dependent analysis which entails the finite-difference 

solution of the quasi-one-dimensional unsteady equations of change 

in steps of time.  For specified equilibrium reservoir conditions 

and a fixed-nozzle shape, the physical gas-dynamic properties 

are obtained in steps of time, starting with assumed distributions 

throughout the nozzle. The steady-state solution is approached 

at large values of time. 
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The present time-dependent analysis considers vibrational 

and chemical nonequilibrium conditions both upstream and downstream 

of the nozzle throat; the proper steady-state critical mass flow 

is automatically approached at large values of time.  In addition, 

no oscillations and instabilities occur in regions of near 

equilibrium flow, no special procedures are required to start the 

solutions from equilibrium reservoir conditions, and very large 

spacings between grid points can be employed throughout the 

entire nozzle.  (Accurate solutions have been obtained for 

convergent-divergent nozzles with area ratios of 10 using as few as 

15 grid points beginning at the reservoir.)  Also, the present 

method readily handles simultaneous rate processes involving very 

slow and very fast reactions. 

The main virtue of the present time-dependent technique is 

its simplicity.  The governing conservation equations are 

directly solved by a simple, explicit finite-difference scheme. 

The technique requires no additional mathematical methods to 

overcome special difficulties that can occur in the analysis 

of nonequilibrium flows.  (See Ref. 1 for a detailed discussion 

of these difficulties.)  Also, the present technique lends itself 

to particularly simple programming for a digital computer. 

Consequently, the simplicity of the present technique prevails 

from its initial physical formulation to the successful receipt of 

numerical results. 

A second virtue is that the present technique yields the 

transient as well as the steady-state nonequilibrium nozzle flows. 
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A transient solution is of interest in its own right; for example, 

the physical times required for the fluid dynamic and chemical 

variables to approach their steady-state values can be assessed. 

ANALYSIS 

The physical problem treated in the present paper is that 

of the quasi-one-dimensional motion of a high-temperature gas 

expanding from equilibrium-reservoir conditions through a 

convergent-divergent nozzle, where the expansion is rapid enough 

such that vibrational and chemical nonequilibrium prevail locally 

in both the subsonic and supersonic portions of the flow.  (The 

term "quasi-one-dimensional" will be discussed in a subsequent 

paragraph.)  Vibrational and chemical nonequilibrium are the only 

dissipation mechanisms assumed in the flow; the effects of thermal 

conduction, diffusion and viscous dissipation are assumed to be 

negligibly small.  The equilibrium reservoir conditions and 

nozzle shape are specified, and a solution is sought for the 

steady-flow distribution of p, u, T, p, e ,, and chemical composi- 

tion in the x direction along the nozzle (see Fig. 1).  The unique 

aspect of the present analysis is that a time-dependent approach 

is used to obtain the steady-state nonequilibrium nozzle flow 

variables. 

The crux of the present analysis is as follows:  For specified 

equilibrium reservoir conditions and a fixed-nozzle shape, initial 

values of the flow-field variables p, u, T, e .. and chemical 
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composition are assumed at equally spaced grid points along the 

x-axis, as shown in Figure 1,  If all flow-field variables are 

known at time t, then at each interior grid point new values can 

be obtained at time (t + At) from the first three terms of a Taylor's 

series expansion in time, 

2      2 
g(t + At) = g(t) + (|f) At + (¥%)   ^- (1) 

at ¥ ^4.^    / at' t 

where g signifies In p. In u, In T, ln(e .,), and In n■/ and At 

is a small increment in time chosen to satisfy certain stability 

criteria discussed in a subsequent section.  (For the present 

numerical computations, the natural logarithms of the nondimensional 

flow-field variables are employed as the dependent variables in 

order to improve numerical stability, and a nondimensional time, 

t' , is employed in lieu of t in equation (1) .) Starting with the 

initially assumed gas-dynamic variables at t = 0, the flow field is 

subsequently obtained in steps of time from equation (1).  At 

large values of time (after many time steps, usually on the order 

of 700 or more) the steady-state flow field is obtained, where 

•jr* and —-* both approach zero.  For the present investigation 

this steady-state solution is the desired result; indeed, the 

purpose of the present report is to show that the time-dependent 

approach is simply an advantageous means to the end. 
.2, 

The time derivatives (iA and (—-*)  which appear in 
dtt     3t^t 

equation (1) are obtained from  \e unsteady quasi-one-dimensional 

conservation equations (the independent variables are x and t). 

These equations can be derived from the consideration of a fixed 
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control volume in the flow; they do not necessarily follow from the 

general three-dimensional partial-differential equations of change 

(formulated in any good text in gas dynamics, such as Ref. 14) 

because of the physical inconsistency between the two assumptions 

of one-dimensional flow and variable cross-sectional area (hence 

the term "quasi-one-dimensional").  Nevertheless, the quasi-one- 

dimensional equations are commonly used as a satisfactory approxima- 

tion for the variation of flow properties through a nozzle; this 

approximation becomes more accurate as the variation of A with x 

becomes smaller.  For a fixed A = A(x), the unsteady quasi-one- 

dimensional equations are: 

Continuity:   A|£ + l^l    = 0 
■' at dX 

(2) 

Momentum; 

Energy; 

9u 9u 
P9t  + PU97 = 

3e 3e 
p9t + pu93r 

dx 

3u 
" P37 

-..9 (In A) 

(3) 

(4) 

Rate: 3t    u9x = wCp, T, q) (5) 

State: p = pRT (6) 

where q denotes a nonequilibrium quantity such as e ..or chemical 

composition, and w is a function which depends on the type of rate 

process under consideration.  Defining the following nondimensional 

variables, p' = p/po, u
1 = u/ao, T' = T/Tc, x' = x/L, f = t/(L/ao), 

A' = A/A*, Z = Inp', V= Inu1, 4> = InT', where the subscript 

zero denotes reservoir conditions, L is the length of the nozzle, 

1/2 
A* is the nozzle throat area, and aÄ = (y^R T ) 'is the reservoir o    o o o 
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frozen speed of sound, and after replacing p in equation (3) with 

equation (6) , equations (2) and (3) become 

3Z      , r9 (In A')   9V  , 3Z , ln\ 
W   " - U t  9x'   + 9F + 9F] (7) 

o 

(Note that equation (8) applies to a nonreacting gas, where R = 

constant; for a reacting gas, where R is variable, equation (8) 

is slightly modified, as shown in a subsequent section.) 

In equations (7) and (8) , all x-derivatives are calculated by 

central finite differences obtained from the known flow field at 

time t.  Consequently, equations (7) and (8) directly yield (-r^) 
-2 t 

required in equation (1) , where g = Z and V; (—-^JO can be obtained 
9t^t 

by differentiating the same equations with respect to time. 

92Z       , .  32V  .   32Z , . ,3V . ,9Z , 
^T = " U l9irr3tr + 9x'9t,] + {TP) {Jti) (7a) 

- - (rnjr) i3xi3
Y
ti + 3x<3t' 

+ TO + ^ ^ W'1 
3
 v 

" u (älTTF + 35? äF) (8a) 

However,   the above  additional time derivatives   introduce cross 
g2 

derivatives, ttrrt  which can be obtained by differentiation of 

equations (7) and (8) with respect to x'. 

32Z  ^ . .,, f3
2(lnA')  jjv   322, . ,3V. ,3Z. .... 

^rTTF" "   l ax^   ^T? 
+ ^T?1 + (33?) (7P) (7b) 
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92V       , T' w d2^    A     9
2Z , ,3A  i 3Z w3$    3V ,, 

93rr3tT   = " {T^r) [rT2 + 772 +  ^ + 33rr) (3P- ' ^ ] 
O     dX      dX 

- u« [-14 + (A.) ] (8b) 

To complete the formulation of the problem, the nondimensional 

counterparts of equations (4) and (5) must be obtained.  These 

counterparts have a distinct form for each of the three cases 

treated in the present paper, namely the cases of a calorically 

perfect gas, vibrational nonequilibrium, and chemical nonequilibrium. 

These forms are presented in the following sections. 

Calorically Perfect Gas 

By treating the case of a calorically perfect, nonreacting 

gas (constant y)» results have been obtained which illustrate 

the purely fluid dynamic behavior of the present time-dependent 

analysis.  For a complete formulation of this case, only the energy 

equation needs to be considered in addition to equations (7) and 

(8).  With e = c T and c = R/(Y - D» the nondimensional form of 

equation (4) is 

1 1^ --'V-l. u-f^-u. ^-(V-D u-ii^l 

Equation (9) directly yields (^) required in equation (1) , where 
^ 2 t 2 

g = 4i;   as before,  -—*    and the  resulting cross derivative  , ■& 
9t* dXdt 

are obtained by differentiating equation (9) with respect to t' 

and x' respectively. 



NOLTR 69-52 

a2* 

at ,2 

2 
3 V 3V 3V = -

(
Y - ^ u,t9ir9P-+ (äp-^it^5 + at 

9 V bdnA") 
ax^ 1 

u ^x'at' + ^x'^ ^ät1^^ (9a) 

a2 (j) 
ax'at' = -(Y - 1) u' [ 

92V . ,3V 2  a2 (In A') , -av, a (InA1) , 

- u* [ 324! 

ax , 2  axT ax (9b) 

Vibrational Nonequilibrium 

The present time-dependent analysis has been applied to the 

vibrational nonequilibrium expansion of a pure diatomic gas. 

These conditions are illustrative of many practical nozzle 

applications where the reservoir temperature is high enough to 

excite the vibrational energy mode, but not high enough to result 

in noticeable dissociation of the gas.  In addition, the vibrational 

mode is assumed to be in equilibrium within itself but not in 

equilibrium with the translational and rotational modes; i.e., 

a Boltzmann distribution is assumed to exist within the vibrational 

mode.  Consequently, a vibrational temperature T .,, not necessarily 

equal to the translational temperature T, can be defined.  With 

e = j RT + e .. , equation (4) becomes 

^ - 2 I- T ^ - T u H^A) - 1 ( 
ae vib ae 

Tt ax dx at 
vib.,    aT 

+ u —aT")1 " u a7 (10) 

Defining e'  = e ../RT and 'vib vib' = ln(evib)'   t^e noncliinensional  form 

of  equation   (10)   is 
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e' .. .„    u'e' 
8* _ _ 2    8V  .  , 3(lnA') . ^vib 86  . " vib 36 ,  „, 34> 

(ID 

In the rate equation, equation (5) , q = e ., and w is assumed to 

be the relaxation equation for a harmonic oscillator. Therefore, 

equation (5) becomes 

9e ..    , 3e ., 
vib  _ 1. r /    \ i       vib 
9t   " T 

uevib,
eq" 

evibJ " u  3x (12) 

where T is the vibrational relaxation time, T = f(p,T), and 

(e .. )  is the equilibrium vibrational energy evaluated at the 
eq 

local translational temperature of the gas, (e ., )  = (hv/k)R/ viD eq 

[exp (hv/kT)-l].  Defining x* = T/(L/a0), the nondimensional form 

of equation (12) is 

(evib) 

TT      T*   l  e'      1J   u  3^ U3, 
vib 

Equations   (11)   and   (13)   directly yield   (-^S-)   for use in equation   (1) , 
o t ^ 

7 2 
where g = «I1 and 6.  As usual, values for (-—§•) and » %     are 

3t^       dXdt 

obtained by differentiation of equations (11) and (13) with respect 

to t" and x' respectively 

92» _  2 f .. , 32V   a 3V  3V  , 3 (In A') 3V, . evib 32e 
^ ■ " f I"' ^x'at»  + fP" fr + ÜV3x" ' fl^ + "T1 

,   evib   ,36   . ,39 30   .    ,   u'evib     32e + "T1" (TtT, {Jtr ~ rtr) + T1— SJTTT 

3t 

u'eV 
vib  36      ,36 3V 31* i      ,,   3   4»       .   1*     3V   , 

T*— 33r (7rr + JtT " 7r)]'u {ixrfr + SP* 3tT) 

(11a) 
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32* 
r^TT - BjTTt -||u'l 3   V 3V 

3x 

2 

^ +   (^   + 
2     ^2(lnA,)   .   SdnA')   3 

3x ,2 
V 

Sx1^     3X1 

u'e' 
•     vib     O       ,     vib  36      ,36     ^  34  .    , v vib    3' 

3x ,2 

.   U'evib   36      .36      ,   3V 34) 
3x r) '     u   (7-72  +   3P" Fxr) 

3x, 

(lib) 

320 

3t ,2 
1   r   i 

3 (e* .. ) vib 

vib 3t1 11 . 
vib 

'vib 
ia iL.i 

3TrJ 

(e' ., ) vib IV  -L JJ ^ ! r e£ _, ,   3T' 

(T
1
) vib 

„• /   929        .96     3V  . 
u   ^x'St'       Sx1" SF"' (13a) 

32e 
5FT3P 

1   r    i 
3 (e* ., ) vib 

vib 3x, !2L - 
(e;ib) 

'vib 

eg   36   . 
3xxJ 

(^ib) 
L-r    V^ eg -i]  ill 

ol     -' ■LJ   Sx' 
(T')2 'vib 

-  u' (J^t + llr A-) 
(3x'2       ^T^T) (13b) 

These additional differentiations   introduce new terms  such 
^   . 9 (e1 .. ) 

vib             vib' a   , 
as       .. t     ,    r-p—-*  ,  -—r ,   and  the  corresponding x1-derivatives. 

3e' ., vib 
~3P~ =  e 38 

vib  3t1 

3e' vib 
"57 T—    = e 36 

vib JP 

9 (^ib) 

3t: 

it")    (e
hvAT   9* , 

(ehv/kT-l)2 

10 
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^'e, ^2'-hV/KT'Mx^ 

V-jfTlC 

If T is assumed to vary as ip = ae   , then 

31'     , ..   c 34   34    3Z v 
at1"  T lDC  äP" " äT1" " at1"' 

14 . T.(bc TC^.^-IZ) 3x 3xr  dx^       9x' 

Finite-difference expressions for ~-r-r and «—7 can also be 
01        dX 

used,   as discussed  in  a subsequent  section. 

Initial values  at  t = 0 are  assumed  for p,  u and T.     For 

convenience,   the  initial values  for e   .,    in  the subsonic and  throat 
V1D 

regions are equilibrium values a,t the local assumed T, whereas at 

some arbitrary point downstream of the throat e ., is usually set 

equal to a constant for the remainder of the nozzle. Consequently, 

the initial e , distribution is at least qualitatively similar 

to the actual steady-state nonequilibrium distribution. 

Chemical Nonequilibrium 

The present time-dependent analysis has also been applied to 

the case of a nonequilibrium dissociating symmetrical diatomic gas 

k j KF 
A0 + M. t     2A + M. (14) 

k J KR 

where M. is a collision partner (catalytic body); in the present 

application, M. ■ A2 and M- = A.  Also, chemical nonequilibrium 

11 
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is the only rate process considered; the vibrational energy is 

assumed to be in equilibrium with translation and rotation at the 

local gas temperature. Hence, for simplicity, no attempt is 

made to account for coupling between vibration and dissociation, 

even though such coupling effects may be important in some 

practical applications.  Letting subscript i denote a given 

chemical species, e = Z. n- E., where n. is the mole-mass ratio 
r i 'i  i'        1 

(moles of species i per unit mass of mixture), E. is the molar 

internal energy of species i including its heat of formation, and 

dE. = C dT.  Also, the local frozen specific heat per unit mass 

of the mixture is c   = E. n • C  , and the local value of the vf    i 'i v.' 

specific gas constant is R = R Z. n • •  In terms of the above quantities, 

equations (3) and (4) become 

'$*>*%--M£ + **%*™& '"' 

3T _  , RTwau .   31nA .     3T   u r „  3ni   1  r „  9ni 
St " " (c^) l8x  u "Ix" ' ~ u Ty ' c^ li ^i  Tx" " c^T ^i ^i 8t 

(16) 

and equation (5) becomes 

where w. is the rate of production of species i by internal chemical 

reactions.  Defining HJ' = n^/n , E.' = Ei/Eo and r^^ = In n/ ,  where 

n and E are the reservoir values of the mixture moie-mass ratio o     o 
and molar internal energy respectively, nondimensional forms of 

equations (15) , (16) and (17) are obtained as 

12 
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9V ,    9V T'      r R    3^   .    8(R/RQ)    .     R    3Z   , 
9t 9X1 yu^   lR    3X1 

o o ^x1 R«  3x' 
(18) 

u' ( 3V 
Ix1 

^JT '       u     9x1 ^   2i V wi 
(19) 

and 

3r, w. 
1 - u' 

3r. 
3x (20) 

where,  for the atomic species 

O *• I 

2     2 

-  (-!—-^-) (P1)2^^^ )2(n^ )  + kR
(2)(nA

,)3] 
O "'" ' ' 2 

(21) 

Note that the  appearance of y    in equation   (18)   is  strictly due 

1/2 to the arbitrary choice of a    =   (y  R T  )   ' '  as a nondimensionalizing o o o o 

quantity;   y     is  the  ratio of  the  frozen  specific heats evaluated 

at reservoir conditions and has no other  significance  in the present 

formulation  for  a  nonequilibrium chemically reacting gas. 

Equations   (18)   through   (21)   directly yield   (|ä)   for  use  in 

equation   (1)   where  g = V,   4)  and  T^ (^—|)   and ^^    are obtained 
3t     t 

by differentiation  of equations   (18)   through   (20)   with respect 

to t'  and x*   respectively. 

2. 
_3^V 

St'2 

2 
3ZV 

" u,(^Tt 

2 

3V     3V 
Tx1"  3 

V  , 1"      tn     3  4)        ,   3*     3G     .     3  G 
p-)   "  Tip"   IG  fipfp   + H1" äF" +   Sx'^t' 

.   n     3   Z        ,   3Z     3G     ,   /r   3*     x  3G    x r H-^ ^11- -  £Lu + G 5x'5t'  + 7P- ^p- + (G A1- + ^T + G ^ (?tir     TF-'] 

(18a) 
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2 

TTTT sx-at 
. f 92V    .    ,3V   .2 T'       rr    92^    ,34)      3G      .     32G 

3X1 3x! 

!   _    a^Z    .   3Z     3G     .    ,34 

3x 7?       Sx1" 3x 9X1 
3V  wr   9*     .   3G      . 

3x' 

(18b) 

where G =  R/R0- Vo(riA+ ^'^ 

3\ -  R  .    , ,   32V       .    ,3V     ,   31nA\    3V  , 

, ,3V     .    31n A\ f   1     3R R 
" u   ^Sx7" + Tx1^' [cVf TtT ~   ,       x2     3t 

9cw 2 
fi   -  „'    f   9   ^        ,    3»,   3V 

w- _4)-(iiT + ^      Vf 
i   3t-'    ^3t-  ■   c^^p-)(ZiEiWi)] 

(19a) 

32(i /   R  x    • f 3 V    .   32lnA' _,    ,3V   i   31n A'x   3V  . 
xnp"" -(c^-)u,l—2 + -TTT-*  (3*+ ^F-)  3P-] 

r dx ox 

_     , .3V 31nA'    ,.  1   >3R U   (^P- + -^P-^'1^^ 
R 

3 c. 

3*.' 

(cVf) 

3E. 

2     3x 
£,-„. (±*   + iir l^r) 

3x ,2        Sx1   Sx1 

3 c, 

O E t 
(19b) 

2 
3zr Ar.      ,     3w., 3r. 3'r.       3r.  „„ 

l        1     , l        • ,       l. , . i i   3V 
"7? " n.'   ^ST1" ' Wi  St1"'   "  u   ^x^f       Sx1" 3x (203^ 

2 
3zr. 

3x 

,    aw; sr. 3'r.     3r.  ... 

TTtr - n7  l33rr     Wi  3^'      U   ^   ,2 + Sx1   3^' i 3x 
(20b) 
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bw ,   Zk^ 
These differentiations introduce new terms such as -r-r-r  ,     -.. i , 

oX. aX. 

hR ^vf   9Ei 
^rr i     g. r » TTT / as well as the corresponding x'-derivatives. 

Straightforward but somewhat lengthy expressions for these terms 

are derived as follows. 

3w'   Lp n        ,,>     3rlA'        „ 3kIi
1) 

-= f  0 0) c' l2k-(1) n '    2 i fn M2 —L 

where 

St'   v a   ' ^  « ^F   ^2  at'   v ^2'   St' 

(2)     ^A      9S 3kF2) + kF^ (S ^ + 'A' ^ + S V "^7~ 

- [
L(P0n0) ](p.)2 )k(l)[(r .2 1% + 2n . n.!llA 1 

O <: 

3k(1) an'     5k(2) 

'A' v ^2   df      R  v A'  dt1^ ' v 'A'   at1^ 

(1) ^ .^2^ M .. u(2) ^.vS, 3Z + ^R'N* V + kR '(^ i !M 

9R     Ä r /V  , 3nA2, 
ät^ = ^ rio(9t^- + ät^-5 

9cvf 9nA'        3CVA2        3nA'2 
7F- = cvA % 3F- 

+ no nA2 TP- + ^ ^o 9P- 

5      (g) 2ehv/kT 
C
VA2 

= 2 Ä+ t^hv/kT^^1« 

C
VA  

= tR 

15 



^ ' .....      —^—^«^l^ 

■R        k(l) (T.J-S M. 
o 

dKR   = „ T« f
dKR  . , (1) 34) v 

at'  ~ ■" TJ V
 at* + KR  at1"' 

NOLTR 6 9-52 

A  _ 1  _o  , 9(1) 
är1"  2 w E 

i at1" o 
I 

 2  = o o »,, 34  r5   'kT' , 
TtT E  1  ät1" l2   . hv/kT 1,2

J 

o (e  '  -1) 

In the above, the electronic energy of each species has been assumed 

negligibly small in comparison to the translational, rotational and 

vibrational energy.  This is a reasonable assumption for the 

temperature range considered in the present results. 

Following Reference 2, the reverse reaction rate constants 

k^  and k^  are assumed to vary as 

O 

k^2) = ascr'/T^k^ 

3k.(1) 

) 

<2) 

Note that r,?i     =  0 when s = 1.  Also, the forward reaction rate 

constants and their derivatives are obtained from the relation * 

k_/k_ = K (T), where K (T) is the equilibrium constant. F R   e e ^ 

Initial conditions at t = 0 are assumed for p, u, and T. The 

initial distribution for nA in the subsonic and throat regions is 

obtained from a chemical equilibrium calculation using the local 

assumed initial distributions of p and T, whereas at some arbitrary 
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point downstream of the throat, n, is set equal to a constant for 

the remainder of the nozzle.  Consequently, in the same vein as 

the vibrational nonequilibrium case, the initial nA distribution 

is at least qualitatively similar to the actual steady-state 

nonequilibrium distribution. 

Comments on the Numerical Solution 

Several comments are in order regarding the numerical behavior 

of the present time-dependent method.  First, in equations (7), 

(8), (9), (11), (13), (18), (19) and (20), the x'-derivatives are 

computed from central differences 

ag  . g(x'-t-Ax')-g(x'-Ax') 
äx'' 2ÄX1 

92g  = gU'+Ax'l^gU'^qU'-Ax') 

ax'2 (Ax■)2 

evaluated from the known flow field at time t'.  Second, the initial 

conditions appear to have no meaningful effect upon either the 

stability or convergence of the technique; results have been 

Obtained for identical nozzles and reservoir conditions but with 

widely different initial conditions, and in each case the same 

steady-state solution was obtained.  Also, second-order accuracy 

as embodied in equation (1) appears to be absolutely necessary 

for stability.  Several attempts at first-order accuracy (using 

the first two terms in equation (1)) met with instabilities for 

both the calorically perfect gas and the nonequilibrium cases. 

Hence, the second-order term involving —8- in equation (1) is 

apparently necessary for convergence. 

17 
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Regarding the vibrational nonequilibrium case, the nonequilibrium 

expansion of a mixture of gases may result in complicated expressions 

for T as compared to the relatively simple variation assumed above. 

Consequently, analytical expressions for YTT and 3Trr as presented 
d t        o X 

above may be extremely tedious, if possible at all.  However, 

experience with the present analysis has shown that these derivatives 

can be approximated directly by the finite-difference expressions 

,3T\    (T,)t.-(T')(t.,At.) 
(TtT)

tl SF  

,3T\    fT' (X'+A;:')-T' (X'-AX
1
), 

^Sx1"^, " l       2Ax,        Jt' 

evaluated from the known flow field at times t* and (t'-Af). 

The use of these finite-difference expressions instead of analytical 

forms for ^TT and -r-r results in less than a 0.2 percent change in 

the final steady-state values for e ,. through the nozzle, and 

no noticeable change at all in the other nozzle flow variables. 

The time increment At appearing in equation (1) is chosen 

at the end of each time step to satisfy both the Courant-Friedrichs- 

Lewy stability criterion, where 

Af i ^ (22) 

and a criterion geared to the speed of the nonequilibrium relaxation 

process 

At' < B* (23) 

18 
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where 4* = T ' for vibrational nonequilibrium, t = 

15 nonequilibrium,  and B is a proportionality constant, found 

empirically to be approximately 0.2 for the present investigation. 

Both criteria must be satisfied simultaneously because two 

"relaxation" processes prevail in the time-dependent flow as it 

progresses towards the steady-state; a fluid dynamic relaxation 

(eq. (22)) involving the propagation and interaction of compression 

and expansion waves throughout the nozzle, and an internal physical- 

chemical relaxation (eq. (23)) involving the finite rate processes 

of vibrational energy and chemical composition changes. 

Because of the central differences employed in the present 

analysis, the flow-field variables at the first and last points 

in the grid (see Figure 1) can not be directly obtained from 

equation (1).  Instead, at the last point (nozzle exit) all the 

flow properties (in terms of Z, V, 0, etc.) are simply obtained 

from linear extrapolation from the two previous internal points. 

The first grid point (nozzle inlet) is considered to be effectively 

in the reservoir, i.e., A/A* at this point is a large number, 

usually greater than ten.  Hence, values of p, T and p at this 

point are assumed to be reservoir values and held fixed, invariant 

with time.  The flow velocity (in terms of V) at this point is 

allowed to vary with time, and is found by linear extrapolation 

from the second and third internal points.  At large values of 

time, the velocity at the inlet approaches its proper steady-state 

value ( a very small but finite number), compatible with the proper 

steady-state mass flow through the nozzle. 

19 
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As a general comment, the philosophy of the present analysis 

is similar to the time-dependent solutions of the supersonic blunt- 

body problem presented in References 16 and 17.  Because the 

unsteady gas-dynamic conservation equations are hyperbolic with 

respect to time, the time-dependent method is admirably suited 

for the unified analysis of mixed subsonic-supersonic flow fields. 

Indeed, the expansion through a convergent-divergent nozzle is such 

a case. 

RESULTS 

Using the present time-dependent analysis, numerical results 

have been obtained on an IBM 7090 digital computer for the three 

cases of a calorically perfect gas, vibrational nonequilibrium 

expansion of diatomic nitrogen, and the chemical nonequilibrium 

expansion of partially dissociated oxygen. Again, emphasis is 

made that the desired results are the steady-state flow fields, 

and that the present time-dependent analysis is an advantageous 

means to that end.  As schematically shown in Figure 1, the 

computations are made at equally spaced grid points along the nozzle. 

As few as 30 grid points are employed in a calculation; this is 

a convenient number and does not represent a required minimum for 

stability.  Indeed, a virtue of the present time-dependent analysis 
■ 

is that relatively large spacings between grid points can be 

employed throughout the nozzle, including the near equilibrium 

subsonic region near the reservoir.  In addition, using the present 

time-dependent analysis for the case of vibrational nonequilibrium, 

several numerical experiments have been performed to examine the 
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effect of the shape (area distribution) of the subsonic nozzle 

section on the resulting frozen vibrational energy at the nozzle 

exit.  For some practical reservoir conditions, the results show 

a noticeable effect, as will be discussed in a subsequent section. 

Calorically Perfect Gas 

In order to investigate the purely fluid dynamic behavior of 

the present time-dependent analysis, results have been obtained 

for a calorically perfect gas with y  = 1.4; some of these results 

are illustrated in Figures 2 to 4. Starting with an initial 

linear distribution, the transient profiles of T' through the 

nozzle are shown at various time steps in Figure 2. Two important 

points are noted from Figure 2:  (1) At early values of time, the 

profiles relax very rapidly to a steady-state distribution, and 

(2) the resulting steady-state distribution shows excellent agree- 

ment with known steady-state results obtained from Reference 18. 

These results are complemented by the transient profiles of local 

mass flow, puA, through the nozzle, as shown in Figure 3.  The 

somewhat wavy initial distribution for puA is a consequence of the 

arbitrarily assumed initial distributions for p and u. Figure 3 

markedly illustrates that the transient solution rapidly proceeds 

to the proper steady mass flow, puA = constant.  This aspect of 

the present analysis is an important virtue when applied to 

nonequilibrium flows, as described in the following sections. 

Excellent agreement for the steady-state distributions of p and u 

is also obtained, as shown in Figure 4. 
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Vibrational Nonequilibrium 

Figures 5 to 9 illustrate results obtained with the present 

time-dependent analysis for the vibrational nonequilibrium 

expansion of N-.  For these results, the characteristic vibrational 

1/3 relaxation time was assumed to vary as xp =  a[exp(-bT ' )], 

following Reference 11.  With one exception, the present results 

are obtained with a = 14.7 and b = 0.915, where p is in atm, T in 

0K, and T in seconds.  These values for a and b are fitted to the 

vibrational relaxation times used in References 8 and 13, which 

19 reflect- the shock-tube data of Blackman.   Of course, recent 

experiments have shown that vibrational relaxation times measured 

behind normal shock waves and subsequently used in equation (12) 

1 20 are not appropriate for expanding flows, '  however, this does 

not detract from the present results, which are intended to 

illustrate the present time-dependent analysis and which are 

compared with earlier analyses using Blackman*s shock-tube data. 

To illustrate the time-dependent behavior of the vibrational 

nonequilibrium solution. Figure 5 shows the transient e .. profiles 

at various time steps; as in the previous case, a rapid approach 

to the steady-state distribution is observed. This steady-state 

distribution agrees with the results of a recent steady-flow 

13 analysis by Wilson et al,  as shown in terms of T .. in Figure 6. 

Both the present time-dependent analysis and the steady-flow 

analysis of Reference 13 include nonequilibrium effects upstream 

of the throat.  The comparisons in Figure 6 are made for several 

reservoir temperatures, and show very good agreement between the 

time-dependent and steady-flow approaches; however, emphasis is 
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again made that the present time-dependent results were obtained 

in a straightforward manner, whereas the steady-flow analysis of 

Wilson et al requires an iterative procedure as well as a forward 

integration matched to an expansion about a singular point slightly 

downstream of the throat. 

For some practical reservoir conditions, nonequilibrium effects 

upstream of the throat are noticeable and have a subsequent influence 

on the frozen vibrational energy at the nozzle exit; these effects 

are shown in Figures 7 to 9.  Figure 7 compares results for 

distributions of T ., and T.    obtained with the present time- vib     trans r 

dependent analysis, which includes nonequilibrium effects upstream 

of the throat, with the results obtained with a steady-flow analysis 

by Harris and Albacete, which assumes local thermodynamic 

equilibrium from the reservoir to the throat.  For this comparison, 

the constants in rp = a[exp(-bT / )] are a = 0.077 and b = 0.576, 

21 which are fitted to the quantum mechanical calculations of Widom. 

Two important points are obtained from the comparison shown in 

Figure 7:  (1) the present results show a noticeable departure 

from equilibrium flow upstream of the throat as reflected by the 

difference between T.     and T ,.  and (2) these upstream non- trans     vib 

equilibrium effects result in a higher frozen T ., at the nozzle ^ 3 vib 

exit in comparison to the results of Reference 7.  For the 

reservoir conditions shown in Figure 7, the vibrational energy is 

a relatively small fraction of the internal energy of the gas. 

Hence, the differences in T .. between the two analyses are not 

paralleled by similar differences in T.    ; indeed, good agreement 
WJB Silo 
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is obtained for T    .  In addition, good agreement is also 

obtained for p and u as shown in Figure 8.   The upstream 

nonequilibrium effects are accentuated at lower pressures, as 

markedly shown in Figure 9.  Here, the present results are compared 

with the steady-state analysis of Erickson,  which like that of 

Reference 7 assumes equilibrium flow to the throat.  The results, 

which are given in terms of local nonequilibrium vibrational energy 

non-dimensionalized by the reservoir equilibrium value, again 

illustrate the effect of nonequilibrium conditions upstream of the 

throat, particularly for the lower value of p .  Consequently, 

Figures 7 and 9 demonstrate the importance of treating nonequi- 

librium effects upstream of the throat when solving the nonequi- 

librium nozzle flow problem.  In contrast to a steady-flow 

approach, the present time-dependent analysis handles such effects 

in a straightforward manner. 

Influence of Subsonic Area Distribution 

The fact that significant nonequilibrium conditions can 

prevail upstream of the throat prompts the following question; 

What is the effect of the shape (area distribution) of the subsonic 

section on the resulting frozen vibrational energy at the nozzle 

exit?  In order to examine this question, several numerical 

experiments have been performed using the present time-dependent 

technique.  Figures 10 and 11 reflect some results from these 

experiments in which vibrational temperature distributions are 

compared for two nozzles with different subsonic sections but 

identical supersonic sections.  These nozzles are shown schematically 
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in Figure 10; the composite nozzle exhibits a greater subsonic area 

change near the throat than the purely hyperbolic nozzle.  Figure 10 

shows only a small difference in frozen T .. at the nozzle exit 

for a reservoir pressure of 80 atm.  However, Figure 11 shows that 

at a lower pressure of 10 atm a considerable difference in frozen 

vibrational temperature is obtained and this difference appears 

to be relatively insensitive to the reservoir temperature. 

Consequently, for practical reservoir conditions, some tailoring 

of the frozen vibrational energy at the nozzle exit can be 

accomplished by proper design of the subsonic section. 

Chemical Nonequilibrium 

Figures 12 to 17 illustrate results obtained with the present 

time-dependent analysis for the case of the chemical nonequilibrium 

expansion of partially dissociated oxygen 

O- + M. t       2 0 + M. 
2 3. 3 

k J 
kR 

where M, = 02 and M- ■ 0. The reaction rate constants and nozzle 

1 2 shape are taken identical to those of Hall and Russo, ' where 

kR1) = kR1) (To/T, ' kR2)/kR1) = 35 T/TD' TD != D/k' D is the ft "'      o 

dissociation energy per molecule, and k^/k^  ■ K .  For the 

present results, the equilibrium constant, K , is obtained from 

Wray22 as K = (1.2 x 103)T"1/2 exp(-118,000/RT), where K is in 
6 6 

moles/cm3 and T in 0K.  Also in the present results the 

vibrational energy is assumed to be in the local thermodynamic 

equilibrium at the local gas temperature. 
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Figure 12 illustrates the transient profiles of atom mass 

fraction a at various time steps, where a = p./p = HJ^.-•  As in 

the previous cases, a continuous approach to the steady state is 

observed.  However, in comparison with Figures 2 and 5 from the 

previous cases. Figure 12 shows that the steady state for the 

chemical nonequilibrium case is obtained after considerably more 

time steps.  This behavior is due to the small values of At 

dictated by equation (23) for the present chemical nonequilibrium 

conditions; this contrasts to the previous results for the 

calorically perfect gas and vibrational nonequilibrium cases, 

where the minimum At came from equation (22) and where the values 

of At were an order of magnitude larger than the present chemical 

nonequilibrium case.  Also in Figure 12, the resulting steady- 

state distribution is compared to the results obtained from the 
2 

steady-flow analysis by Hall and Russo;  very good agreement is 

obtained.  (Note that a slight discrepancy occurs with the 

equilibrium reservoir mass fraction, a , which can be attributed o 

to slight differences in K between the two sets of results.) e 

Whereas the results shown in Figure 12 are computed for « 

p = 9.4 atm. Figures 13 to 17 show results obtained for 

p = 82 atm, where equilibrium conditions are more closely 

approached, hence providing a more stringent test for the stability 

of a nonequilibrium flow analysis.  Figure 13 shows the variation 

of a at the nozzle exit as a function of time; the steady-state 

a,     • <. is approached at large values of time.  Figures 14 to 17 

show results obtained with the present time-dependent analysis 
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for the steady-state a, T, p and p distributions, respectively 

(plotted versus nozzle area ratio).  These results are compared 

with the results of Hall and Russo, obtained from a steady-flow 

analysis.  Very good agreement is obtained; however, emphasis 

is again made that the present results are obtained in a 

straightforward manner, whereas the steady-state analysis of 

Reference 2 requires an iterative procedure due to the unknown 

critical mass flow, and employs an asymptotic series solution 

for the flow at large areas upstream of the throat for starting 

the forward integration. 

CONCLUSIONS 

In summary, the following conclusions are made:  (1) A new, 

alternative solution for quasi-one-dimensional nonequilibrium 

nozzle flows is presented.  A virtue of this new technique is 

its simplicity, which prevails from its initial physical 

formulation to the successful receipt of numerical results. 

Consequently, the time-dependent technique appears to warrant 

consideration for future applications in nonequilibrium nozzle 

flows.  (2) Because in some practical cases nonequilibrium 

conditions prevail upstream of the throat, the shape of the 

subsonic section can have a noticeable effect on the frozen 

vibrational energy at the nozzle exit. 

Parenthetically, it should be noted that the present time- 

dependent results always converged to the supersonic solution 

downstream of the throat; a purely subsonic solution was never 

observed.  This situation was due to the choice of initial values 

27 



«■P 

NOLTR G9-52 

which were in qualitative agreement with a supersonic solution 

(i.e., low exit values of density and temperature, and high 

values of velocity). 

I 
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- TIME-DEPENDENT ANALYSIS 

• NACA 1135 (REF. 18) 

A/A*  =1+2.2 (x-1.5)2 
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DISTANCE ALONG NOZZLE, x 

3.0 

FIG. 4  STEADY-ST ATE PRESSURE AND VELOCITY DISTRIBUTIONS 
FOR A CALORICALLY PERFECT GAS; COMPARISONS OF 
THE PRESENT TIME-DEPENDENT ANALYSIS WITH RESULTS 
OBTAINED FROM REFERENCE 18. 
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FIG. 6  STEADY-STATE TV|B DISTRIBUTIONS FOR THE NONEQUILIBRIUM 
EXPANSION OF N2; COMPARISON OF THE PRESENT TIME- 
DEPENDENT ANALYSIS WITH THE STEADY-FLOW ANALYSIS OF 
REFERENCE  13. 
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NONEQUILIBRIUM EXPANSION OF N2; COMPARISON OF THE 
PRESENT TIME-DEPENDENT ANALYSIS WITH THE STEADY-FLOW 
ANALYSIS OF REFERENCE 7. 
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FIG. 11   COMPARISON OF TV|B DISTRIBUTIONS FOR TWO NOZZLES WITH 
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SECTIONS; p0     10 atm, NONEOUILIBRIUM EXPANSION OF N2. 
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